
©1998 Isaac K. Evans. To appear in Evolutionary Programming VII, Proceedings
Seventh International Conference (EP98).

Evolutionary Algorithms for Vertex Cover

Isaac K. Evans
Department of Electrical and Computer Engineering

University of Iowa
Iowa City, IA 52242

ikevans@eng.uiowa.edu

Abstract. This paper reports work investigating various evolutionary approaches to
vertex cover (VC), a well-known NP-Hard optimization problem. Central to each of the
algorithms is a novel encoding scheme for VC and related problems that treats each
chromosome as a binary decision diagram. As a result, the encoding allows only a
(guaranteed optimal) subset of feasible solutions. The encoding also incorporates
features of a powerful traditional heuristic for VC that allow initial EA populations to be
seeded in known promising regions of the search space. The resulting evolutionary
algorithms have displayed exceptionally strong empirical performance on various vertex
cover, independent set, and maximum clique problem classes.

1  Introduction

Vertex cover (VC) is a well-known combinatorial optimization problem with practical
applications in, for example, computer networking and scheduling. VC formulated as
a decision problem is NP-Complete [9]. The NP-Hard optimization problem is simply
to find a cover of minimum size in the given graph, i.e., given an undirected graph G
consisting of nodes V and edges E, find a minimum size subset of nodes VC ⊆ V such
that every edge in E is incident on at least one of the nodes in VC. Excellent overviews
of VC approximation algorithms can be found in [11] and [13].

Vertex cover is also closely related to the important problems of independent set
(IS) and maximum clique (MC). In this paper EAs for VC will be directly compared
against GAs for IS. As is always true, however, appropriate caution must be exercised
when considering a transformation between problem types. Performance bounds may
not remain useful after transformation [9]. Additionally, the conversion may not
preserve the practical tractability of a particular problem instance or class. As a result,
section 4 includes only limited comparisons against previously reported GAs for MC
[5] and only in cases where independent set results have also been reported.

2 Vertex Cover Heuristics

Many traditional heuristics for vertex cover are known. Perhaps the most obvious is
the greedy algorithm, in which the vertex of maximum remaining degree (incident on
the maximum number of edges) is repeatedly removed from the graph and added to
the cover until all edges are covered. While intuitive, the algorithm actually performs
poorly on many classes of graphs and has no fixed performance bounds. An
alternative algorithm is focused on finding a maximal matching in the graph: while
edges remain, choose an arbitrary edge, add both endpoints to the cover, and remove
both vertices from the graph. Because each selected edge must be covered by at least
one of its endpoints, the algorithm has a fixed performance bound of 2, i.e., the



resulting cover is at most twice the optimum cover. A number of other traditional
approaches to VC, typically with performance bounds close to 2, have been reported
and are discussed in [11] and [13]. A local-ratio approximation algorithm with best
known bound of 2 2− loglog logn n relies on the repeated removal of sub-graphs,

specifically small odd cycles or triangles [3].
Pramanick describes a novel stochastic optimization approach to VC [15] as a

"practical method for computing vertex covers for large graphs" [14]. Parallel
Dynamic Interaction (PDI) is an inherently parallel optimization methodology that
exploits the non-deterministic behavior of shared-memory multiprocessors as the
stochastic input to the algorithm. Individual processors search for covers in subsets of
the complete graph. Global covers are formed by dynamic interaction between
processors (reminiscent of a commodities trading process), in which the non-
deterministic time of completion resolves competition between local solutions. PDI
displayed very strong empirical performance on two problem classes (described later)
when compared against traditional algorithms [15]. Previously reported neural
network [16] and genetic algorithm [12] approaches to VC provide improved quality
solutions on certain of the benchmark problems used in the PDI study, albeit with
significantly increased computation times.

The work reported in this paper makes use of an alternate traditional heuristic for
vertex cover, labeled OBIG [7]. The opportunistically-bounded inverse greedy
algorithm is described by the following pseudo-code:

OBIG: VC ←∅, B = 0
while edges remain {

while vertices of degree 1 remain {
select d1 vertex; add adjacent vertex to VC

remove d1 and adjacent vertex from G
match removed vertices;  B = B + 1

}
select arbitrary vertex of minimum degree ≥ 2
add all adjacent vertices to VC

remove selected and all adjacent vertices from G
opportunistically match removed vertices;  B = B + m     { m = # pairs,  m ≥ 1 }

}
Output VC , relative performance bound | VC | / B

Rather than choosing the vertex of maximum remaining degree to include in a
cover, the inverse greedy approach to VC chooses the vertex of minimum remaining
degree to exclude from the cover. Each excluded vertex forces adjacent vertices into
the cover to maintain feasibility of the solution. This inverse greedy technique is
analogous to the greedy algorithm for independent set (the "inverse" problem),
attributed to Paul Erdös (see [11]). OBIG also relies on the observation that a vertex
of degree 1 need never be included in an optimal cover, because the adjacent vertex
may always be included instead without loss of optimality. (OBIG also implicitly
ignores vertices of degree 0). This methodology effectively reduces the size of the
search space - only a subset of feasible solutions (guaranteed to include optimal
solutions) need be considered. It is important to note that this feature embodies more



than a simple preprocessing step on the input graph, because degree 1 vertices are
removed automatically at each iteration of the algorithm whenever uncovered in the
residual graph. A simple greedy algorithm for independent set also optimally handles
vertices of degree 0 and 1 [10]; OBIG's explicit removal of degree 1 vertices lends
itself to the BDD encoding described in the next section.

While not critical to the cover formulation, the OBIG algorithm also provides a
constructive bound by opportunistically matching vertices as they are removed from
the graph over the course of the algorithm. Any optimum cover must include at least
one vertex for each matched pair. Assuming appropriate data structures, OBIG is an
O(|V|+|E|) algorithm, or linear with graph size. The key insight supporting this
conclusion involves the sort implied by minimum degree vertex selection, which can
be performed in linear time because the degree of any vertex is integral with
maximum (|V|-1). OBIG shares some features with a previously reported search
procedure (GRASP) for IS [8]. GRASP orders vertices by degree but incorporates
local search to select a vertex of "low" degree to add to the independent set, as well as
in a preprocessing phase. This exponential local search is arbitrarily limited in scope.

3  EAs for VC and IS

The importance of the encoding of the underlying problem is well-known for EA
optimization approaches. In the case of vertex cover and related problems, the most
obvious approach is a direct encoding in which each bit of a binary chromosome of
length |V| defines the presence or absence of the corresponding vertex in the cover.
Most previously reported GAs for VC, IS, MC and related problems have used this
direct encoding style, e.g. in [1],[2],[5] and [12]. An obvious drawback of the
approach is that the direct encoding allows infeasible solutions. The bitstring of all
zeros, for example, corresponds to an invalid candidate cover with no vertices. More
importantly, the encoding allows infeasible solutions to be created from existing
feasible solutions using typical mutation and recombination operators found in EAs.
Previously reported work has typically attacked the problem with penalty functions, in
which the fitness of solutions that violate constraints is reduced, or with validation
procedures, in which infeasible solutions are corrected to some "nearby" valid
solution. Kommu compared two validation techniques with three different penalty
methods [12]. After lengthy empirical investigation on the VC problem sets of [15],
he concluded that the validation procedure based GAs performed somewhat better
than the various penalty methods as well as providing significantly better solutions
than traditional or PDI heuristics. Bäck and Khuri used a direct encoding with a
graded penalty function in their GA for IS [2]. They tested their algorithm with
randomly constructed graphs, as well as a class of scalable regular graphs. Aggarwal
and co-authors use a direct encoding along with a domain-specific "optimized
crossover" operator in their GA for IS [1]. Their crossover operation incorporates a
local search (NP-Hard in general) along with a validation procedure to correct
infeasible child solutions.

The approach taken in this paper uses a fitness evaluation skeleton based on the
traditional OBIG heuristic with an embedded binary decision diagram (BDD)
encoding. The BDD encoding and fitness evaluation can be described as follows:



BDD-IG: VC ←∅, i = 0
while edges remain {

while vertices of degree 1 remain {
select d1 vertex; add adjacent vertex to VC

remove d1 and adjacent vertex from G
}
select next  vertex ν of minimum degree ≥ 2
if chromosome bit i = 0 { • exclude ν •

add all adjacent vertices to VC ; remove ν and all adjacent vertices from G
}
else if chromosome bit i = 1 { • include ν •

add ν  to VC ; remove ν  from G
}
i = i + 1

}
Output fitness = |VC|

Each bit of the chromosome corresponds not to a particular vertex, but rather to the
next decision to be made during synthesis of a feasible cover. Because only feasible
solutions are considered (actually only a subset of feasible solutions guaranteed to
contain optimal solutions), no penalty functions or validation procedures are required
in evolutionary algorithms based on this encoding. The search is naturally limited to (a
subset of) the feasible region, which is dramatically smaller than the entire search
space for many classes of graphs (although still exponential). These results are
summarized by the following theorems [7]:

THEOREM 1.  BDD-IG encodes only feasible covers.

PROOF.  Constructive: each step of the algorithm maintains feasibility of the partial
solution. All edges are eventually removed from the graph, and no edge is removed
unless at least one of its endpoints has been included in the cover.       

THEOREM 2. BDD-IG cannot encode all feasible covers.

PROOF.  Consider a graph with at least one degree one vertex. Because the degree one
vertex will be automatically excluded from the cover, BDD-IG cannot encode the
feasible cover consisting of all vertices in the graph.       

THEOREM 3. BDD-IG can encode covers of each optimal (and optimum) size.

PROOF. Constructive: each step of the algorithm maintains potential optimality of the
current partial solution under construction. Consider a selected vertex of degree 1.
This vertex is automatically excluded from the cover, but because it is incident on
only a single edge, the adjacent vertex may always be included instead without
increasing the size of the cover. Consider a selected vertex ν. Any optimal cover
must either include ν, or exclude ν. Since both possibilities can be encoded, the
potential optimality of the cover under construction is never reduced.      



One of the most important features of the BDD-IG (and OBIG) algorithms is their
compression of the underlying search space. In fact, the encoding in a given graph is
effectively variable length with values between 0 and |V|-2 easily demonstrated. Any
star graph, for example, requires a chromosome of length 0 because the central vertex
is automatically included in the cover as the first arbitrary degree 1 vertex is excluded.
A cover for a fully connected graph can be encoded by a string of |V|-2 ones (although
in this case the cover could also be encoded by a single zero at any locus). In practice,
the actual length of a particular encoding is strongly dependent on the average degree
of vertices encountered during the cover construction and on the number of zeros in
the encoding, i.e., on the number of vertices excluded from the cover, each of which
forces multiple vertices to be included in the cover without necessitating additional
bits in the chromosome. The actual BDD-IG encoding length also varies with graph
instance and class, of course, but is typically much less than the |V| bits required by a
direct encoding. One graph examined later, for example, is keller6, which contains
3361 vertices, but requires only ~40 to ~60 bits to encode "good" solutions with
populations seeded in known promising regions of the search space. This can be
(roughly) viewed as a dramatic reduction in the search space by a factor of 2(3361-60) or
23301. While theorem 3 guarantees that BDD-IG encodes optimal covers within the
reduced search space, BDD-IG does not necessarily encode every cover of a given
optimal size. The example graph of figure 1 has four different optimum covers of size
3. BDD-IG will automatically exclude vertex 1 and subsequently return one of three
optimum covers that include vertex 2. Because vertex 1 is excluded, however, BDD-
IG cannot encode the optimum cover {1,3,4}.

Figure 2 displays another illustrative example. Graph misp6 is an example of a
class of regular, structured graphs introduced to test a graded penalty function based
GA for IS [2]. It is evident from the figure that misp6 has an optimum cover of size 2
(vertices {2,5}) with an equivalent maximum IS of size 4. Bäck and Khuri empirically
tested similar graphs using 102 and 202 vertices. In 100 runs each (20K-40K fitness
evaluations per run), the penalty function based GA failed to find the optimum for
either graph, although it found solutions close to optimal. On the same graphs, OBIG
deterministically finds the globally optimum VC or IS, and also guarantees the
optimality of the solution with a relative bound of 1.00. (Consider arbitrarily selecting
minimum degree vertex 4 first in figure 2. Vertices 2 and 5 are forced into a cover of
size 2. The optimum cover is guaranteed to have minimum size 2 because two pairs of
vertices can be opportunistically matched, e.g. {4,5} and {1,2}). Similar bounding
results can be obtained from an expanded BDD-IG definition that includes
opportunistic matching, but it is often more appropriate to simply run OBIG or
another algorithm with better bounding performance [7] as an EA post-processing
step, from which an effective relative bound can be computed.

1

2

3 4

5 1 2 3

4 5 6

Fig. 1. Example-Th3 Fig. 2. Misp6



Another feature of the BDD-IG encoding critical to the strong experimental results
reported later is the ability to seed initial EA populations into known promising
regions of the search space. Consider a BDD-IG encoded chromosome of all zeros. At
each decision point in the algorithm, the zero bit of the chromosome forces the current
selected vertex of minimum degree to be excluded from the cover, and forces all
adjacent vertices to be included. This is exactly equivalent to the inverse greedy
approach of OBIG. Thus BDD-IG reduces to OBIG when an all-zero chromosome is
encountered1. Because OBIG is an intuitive heuristic that also displays strong
standalone empirical performance, a reasonable a priori conclusion is that BDD-IG
encoded chromosomes close to all-zeros should have "good" fitness. Actual results, of
course, will be dependent on characteristics of the particular graph or graph class.

As suggested earlier, very few examples of encodings for VC/IS/MC other than
direct encodings exist in the literature. Aggarwal provides one recent example of a
non-direct encoding applied to IS [1], in which each cover is encoded as a string of |V|
random integer keys, upon which normal mutation and crossover operators are
applied. Each fitness evaluation requires running a greedy algorithm on the sorted set
of keys. Like BDD-IG, Aggarwal's R-Key GA ensures feasibility of candidate
solutions after crossover. In empirical testing on some of the DIMACS maximum
clique problems, their R-Key GA provided poorer quality solutions than Aggarwal's
own optimized crossover GA (OCH). The R-Key GA also required an order of
magnitude longer computational times [1], perhaps in part due to the sorting required
by each fitness evaluation. Various authors have also suggested biasing initial
populations. Kommu, for example, used initial populations for vertex cover that were
guaranteed feasible and at least partially minimal [12], while Aggarwal seeds the
initial population of OCH with maximal independent sets determined from a greedy
algorithm run on randomly ordered vertices of the graph [1].

4  Experimental Results

Both OBIG and BDD-IG encoded evolutionary algorithms have been empirically
tested using the VC benchmarks described in [15]. Pramanick investigated two graph
classes using PDI: a class of random graphs (irand##) and a class of graphs (sg##)
derived from the ISCAS-89 VLSI circuit benchmark suite [4]. The graphs vary in size
but include instances with up to 2083 vertices (denoted by ## in the label) and as
many as 28799 edges. Pramanick compared PDI algorithm performance against
traditional heuristics for VC, including greedy (GH), maximal matching (MM), and
two versions of a local-ratio algorithm (LRC/T). She reported very strong PDI
performance with PDI dominating the traditional heuristics in solution quality. The
basic OBIG algorithm described in section 2 was compared against PDI and the
traditional heuristics on the same graph instances. Results for GH, MM, LRC/T and
PDI are extracted from [14] and [15]. Each of the traditional algorithms was run
"several" times, except the local ratio algorithm, which was run once for each graph.
                                                          
1 BDD-IG actually reduces to a single arbitrary instance of OBIG. In OBIG, selection ties are broken
arbitrarily (randomly), while in BDD-IG selection ties are broken in a fixed order (arbitrarily chosen for
each EA run) to allow an encoded chromosome to effectively determine the total ordering of vertices
considered by the algorithm - thus ensuring that the encoding deterministically maps to a particular cover.



PDI results are based on three or four runs for each of six PDI heuristic/strategy
combinations [15]. OBIG results are based on ten runs for each graph.

OBIG solution quality dominated traditional and PDI algorithms on each of the 12
smallest irand and sg graphs, discovering the optimum cover for 11 of 12 graphs.
Table 1 shows similar solution quality results for the large irand and sg graphs. The
best (minimum) solution found is reported for the GH algorithm, while the range of
solutions discovered is reported for PDI and OBIG. As is true for the small graphs,
PDI provides excellent results - dominating those of GH (as well as MM and LRT not
repeated here). OBIG, however, yields superior covers for each graph except sg1770.
More interestingly, OBIG also requires orders of magnitude less time to compute the
better quality solutions. Table 1 includes runtimes on the 8 large graphs for which PDI
results were reported [15]. OBIG data is averaged over ten runs2.

The excellent performance of OBIG (or alternatively of the greedy approach to IS)
on these vertex cover problem classes is promising, but doesn't directly address the
potential utility of BDD-IG. Table 2 reports the results of an initial study made to
assess the effectiveness of the encoding within an EA framework. A traditional elitist
GA was implemented using the BDD-IG encoding/fitness evaluation function. The
GA used the basic generational structure of an SGA, but used binary tournament
selection and uniform crossover (Px = 0.85). Because the BDD encoding is effectively
variable length, the next-bit mutation rate was arbitrarily fixed at 0.01 for all
problems. As suggested in section 3, the initial population was biased towards the all-
zero chromosome: each bit was initialized to zero with probability (P0init) = 0.99. The
resulting GA (labeled BDDGA in the table) was terminated after 20 generations with
population size 20. Ten runs each were made on the 11 graphs (10 large graphs plus
irand85) for which OBIG had not already discovered the optimum cover.

Table 2 also includes results reported for some of the same graphs in [12] and [16].
Shrivastava described a Hopfield neural net algorithm (NN) for vertex cover that
produced superior quality results to PDI on certain graph instances, but required
significant computational time. As described previously, Kommu implemented a

                                                          
2 A recent OBIG implementation is about 4 times faster than that used during these experiments. Average
run times are reported because, unlike PDI, variance between runs is negligible. OBIG data was collected
on a 166 MHz Pentium PC while PDI data represents aggregate CPU time on a 14 processor Encore.

Table 1. OBIG performance for large graphs

|VC| runtime (seconds)
graph GH PDI OBIG PDI OBIG

sg269 190 177-189 173-178 10.2-23.9 0.0237
irand500 402 369-304 353-360
sg698 494 465-492 450-452 196.0-238.4 0.142
sg821 465 433-465 392-394 50.5-90.3 0.0591
irand1000a 688 627-701 591-599 70.1-139.6 0.108
irand1000b 795 723-800 698-708 112.9-251.1 0.13
irand1300 1110 1045-1048 1014-1023
sg1742 1206 1124-1202 1108-1111 557.2-673.8 0.207
sg1770 1114 1049-1129 1063-1077 880.5-929.4 0.232
sg2083 1246 1157-1291 1149-1155 302.1-349.2 0.355



variety of GAs for VC and reported excellent solution qualities for some of the same
graphs. The best cover discovered by any of his various GAs (KGA) is reported in the
table. He did not report computational requirements for the best of the algorithms;
however, sample runtimes for GAs yielding poorer quality solutions were reported as
1000s to 10,000s of seconds for the larger graph instances [12]. As can be seen from
the table, the BDD-IG encoded GA showed excellent performance on this test suite.
BDDGA found better covers than OBIG for each graph, and dominated the best
solutions previously discovered using PDI. The simple BDDGA also typically found
better covers than any of the various algorithms summarized under NN or KGA.
BDDGA solution quality was worse than KGA only for graphs sg698 and sg1770. In
the case of graph sg2083, the optimal cover discovered by BDDGA was validated as a
globally optimum cover by comparing with the best known bounding results [7]. The
strong solution quality obtained with BDDGA still required orders of magnitude less
runtime than any of the competing algorithms. For the graphs reported previously in
table 1, BDDGA required between 1.95 and 95.0 seconds per run.

A follow-on study was conducted to examine the effectiveness of several
potentially more robust evolutionary algorithm approaches to some of the most
difficult of these vertex cover problems, including the two for which BDDGA had not
already discovered the best known cover. Various EAs were investigated, including
traditional elitist serial and island parallel GAs, as well as both mutation-only and
recombination-only algorithms. Each algorithm was implemented using the BDD
based encoding. Although detailed results are not provided here for brevity, each
BDD-IG encoded EA provided superior quality results over the various traditional,
NN, and penalty/validation based KGA approaches described earlier. The best overall
performance was provided by incorporating a mutation-only hill climbing post-
processing phase (HC) with the recombination-only Hypergamous Parallel GA
(HPGA) [6]. The resulting hybrid algorithm (HPGA+HC) discovered the best known
solution for each of the graphs examined [7].

Additional empirical investigation of OBIG and BDD-IG was conducted using the
DIMACS maximum clique problems [17]. Two of the DIMACS graph classes known
to be among the most difficult [1] are reported here: keller and mann. Performance of
the OBIG algorithm and a BDD-IG encoded HPGA+HC is shown in table 3. The

Table 2. GA/NN best (minimum) solutions for large graphs

graph NN KGA OBIG BDDGA
irand85 59 58
sg269 174 172 173 172
irand500 381 353 350
sg698 426 404 450 446
sg821 418 394 392 391
irand1000a 648 591 588
irand1000b 753 698 694
irand1300 1076 1014 1009
sg1742 1170 1109 1108 1100
sg1770 1180 1018 1063 1047
sg2083 1272 1158 1149 1139



table also includes results reported for Aggarwal's OCH GA for IS and Bui's GA for
maximum clique (GMCA) [5]. OCH had previously displayed exceptionally strong
performance compared to various traditional algorithms for independent set on the
DIMACS benchmarks [1]. Each of Aggarwal's algorithms for IS, along with the
algorithms for vertex cover reported here, were run on the complementary graphs of
the original benchmarks. Solutions thus correspond to maximum clique solutions
found for the original graphs. Values reported in the table represent the size of the
best (maximum) independent set or clique discovered (or alternatively as |V-VC| ).

Two versions of OCH were reported. OCH2 corresponds to the best solution of
two experiments; OCH20 reports the best solutions of twenty experiments. Aggarwal
did not implement OCH for mann_a81 and keller6, "the reason being not so much the
method itself, but the fact that there was not enough memory to load the graphs" [1].
OBIG was implemented for each of the graphs listed. A BDD-IG encoded algorithm
(HPGA+HC) was run on each graph instance for which OBIG failed to find the
optimum independent set (cover). Following the Aggarwal study, the value reported is
the best of two experiments. Implementation details are described in [7]. The resulting
solution qualities show OBIG and BDD-IG performance similar to that seen earlier
for the irand and sg graphs. OBIG or the BDD-IG based hybrid algorithm obtained
results equal to or better than the strong results provided by OCH on all graphs except
keller5. (The algorithms were also successfully run on the very large graphs
containing ~3000 vertices). As before, these results were obtained with modest
computational requirements: OBIG ran at least an order of magnitude faster than
OCH2 (normalized to SGI Challenge equivalent performance), while the BDD-IG
encoded EA required time comparable to OCH20. Ten OBIG runs on mann_a81 and
keller6 required 0.44 and 17.7 seconds respectively.

5  Conclusions

This paper introduced an encoding for the important graph theoretic problems of
vertex cover and independent set. The approach relies on a binary decision diagram
embedded within an effective traditional heuristic for the underlying vertex cover
problem. Each bit of the chromosome corresponds not to a particular vertex (as is true
in most prior EAs for VC and related problems), but instead to the next decision to be
made during synthesis of a feasible cover. The resulting BDD-IG encoding and fitness
evaluation function was shown to encode a subset of the search space's feasible region
guaranteed to include optimal solutions. The encoding thus naturally obviates the need

Table 3. Best (maximum) IS solutions for keller and mann benchmarks

graph |V| optimum OCH2 OCH20 GMCA OBIG HPGA+HC
mann_a9 45 16 16 16
mann_a27 378 126 126 126 125 126
mann_a45 1035 345 343 345 337 343 345
mann_a81 3321 ≥1100 1097 1099
keller4 171 11 11 11 11 11
keller5 776 27 25 27 18 26 26
keller6 3361 ≥59 52 54



to apply validation or penalty methods to infeasible solutions derived from direct
encodings. Because BDD-IG is based on the skeleton of a strong traditional heuristic
for VC, the approach also allows initial EA populations to be seeded in known
promising regions of the search space. The encoding was empirically examined on a
variety of vertex cover problem classes, including graphs derived from ISCAS-89
circuit benchmarks and graphs included in the DIMACS benchmark suite for
maximum clique. Performance of the BDD-IG based algorithms was exceptionally
strong compared to heuristic algorithms for VC and IS that are among the best
previously reported.

References

[1] Aggarwal, C. C., Orlin, J. B., and Tai, R. P. "Optimized Crossover for the Independent Set
Problem," Operations Research, 45(2):226-234, March-April 1997.

[2] Bäck, T. and Khuri, S. "An Evolutionary Heuristic for the Maximum Independent Set
Problem," in Proc. First IEEE Conference on Evolutionary Computation, IEEE Press, pp.
531-535, 1994.

[3] Bar-Yehuda, R. and Even, S. "A Local-Ratio Theorem for Approximating the Weighted
Vertex Cover Problem," Annals of Discrete Mathematics, 25:27-45, 1985.

[4] Brglez, F., Bryan, D. and Kozminski, K. "Combinational Profiles of Sequential
Benchmark Circuits," in Proc. Intl. Symp. on Circuits and Systems, pp. 1929-1934, 1989.

[5] Bui, T. N. and Eppley, P. H. "A Hybrid Genetic Algorithm for the Maximum Clique
Problem," in Proc. of the 6th ICGA, Morgan Kaufmann, pp. 478-484, 1995.

[6] Evans, I. K. "Embracing Premature Convergence: The Hypergamous Parallel Genetic
Algorithm," to appear in Proc. of the 5th IEEE Intl. Conf. on Evolutionary Computation.

[7] Evans, I. K. “Reemphasizing Recombination in Evolutionary Search: Heuristics for
Vertex Cover,” Ph.D. Thesis, University of Iowa, 1997.

[8] Feo, T. A., Resende, M. and Smith, S. H. "A Greedy Randomized Adaptive Search
Procedure for Maximum Independent Set," Operations Research, 42(5):860-878,
September-October 1994.

[9] Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman & Co., 1979.

[10] Halldórsson, M. M. and Radhakrishnan, J. "Greed is Good: Approximating Independent
Sets in Sparse and Bounded-degree Graphs," Proc. 26th ACM Symposium on Theory of
Computing, pp. 439-448, 1994.

[11] Hochbaum, D. S., ed. Approximation Algorithms for NP-Hard Problems, PWS Publishing
Company, 1997.

[12] Kommu, V. "Enhanced Genetic Algorithms in Constrained Search Spaces with Emphasis
in Parallel Environments," Ph.D. Thesis, The University of Iowa, 1993.

[13] Motwani, R. "Lecture Notes on Approximation Algorithms - Volume I," Technical
Report, Department of Computer Science, Stanford University, 1992.

[14] Pramanick I. and Kuhl, J. G. "A Practical Method for Computing Vertex Covers for Large
Graphs," in Proc. Intl. Symposium on Circuits and Systems pp. 1859-1862, 1992.

[15] Pramanick I. and Kuhl, J. G. "An Inherently Parallel Method for Heuristic Problem-
Solving: Part II-Example Applications," IEEE Transactions on Parallel and Distributed
Systems, 6(10):1016-1028, 1995.

[16] Shrivastava, Y., Dasgupta, S. and Reddy, S. M. "Guaranteed Convergence in a Class of
Hopfield Networks," IEEE Transactions on Neural Networks, 3(6):951-960, 1992.

[17] DIMACS Challenge Problems for Maximum Clique, available via anonymous FTP at
dimacs.rutgers.edu.


